CSV Data Type Converter
Convert data types in CSV - Transform CSV column values to numbers, booleans, dates with automatic type detection and cleaning
Data ToolsHow to Use CSV Data Type Converter
How to Use CSV Data Type Converter
Convert and clean data types in your CSV files with our intelligent CSV Data Type Converter. Automatically detect and convert strings to numbers, booleans, dates, and more. Perfect for data cleaning, preparing CSV files for database import, or standardizing data formats.
Quick Start Guide
- Paste CSV Data: Copy your CSV content and paste it into the input area
- Auto-Detection: Data types are automatically detected from your data
- Review Types: Check the suggested data types for each column
- Adjust Types (optional): Change any column's target data type using the dropdown
- Click Convert Types: Apply the conversions
- Copy Result: Click "Copy Output" to copy the cleaned CSV
Understanding Data Type Conversion
What is CSV Data Type Conversion?
CSV data type conversion transforms values in CSV columns from one format to another. This includes cleaning currency symbols from numbers, standardizing boolean values, formatting dates consistently, and removing special characters that prevent proper data import.
Common Conversions:
Number Conversion:
- Removes: $, commas, % symbols
- $1,200.00 → 1200
- 15% → 15
- $99.99 → 99.99
Boolean Conversion:
- Standardizes to true/false
- yes/no → true/false
- 1/0 → true/false
- Y/N → true/false
Date Conversion:
- Converts to ISO format (YYYY-MM-DD)
- 01/15/2024 → 2024-01-15
- Jan 15, 2024 → 2024-01-15
- 2024-1-15 → 2024-01-15
String (No Conversion):
- Keeps original value
- Useful for text columns, IDs, names
Common Use Cases
1. Clean Price Data for Analysis
Before:
product,price,quantity
Laptop,$1200.00,5
Mouse,$29.99,150
After (price → number):
product,price,quantity
Laptop,1200,5
Mouse,29.99,150
2. Standardize Boolean Flags
Before:
user,active,verified,premium
Alice,yes,1,true
Bob,no,0,false
After (all → boolean):
user,active,verified,premium
Alice,true,true,true
Bob,false,false,false
3. Format Dates Consistently
Before:
name,signup_date,last_login
Alice,01/15/2024,2024-02-20
Bob,2024-1-20,02/22/2024
After (dates → YYYY-MM-DD):
name,signup_date,last_login
Alice,2024-01-15,2024-02-20
Bob,2024-01-20,2024-02-22
4. Remove Percentage Symbols
Before:
month,growth,margin,discount
Jan,5.5%,45%,10%
Feb,8.2%,48%,15%
After (% columns → number):
month,growth,margin,discount
Jan,5.5,45,10
Feb,8.2,48,15
5. Clean Mixed Data Types
Before:
order,total,paid,shipped
1001,$1500.00,yes,2024-01-15
1002,850.50,no,01/20/2024
After (total → number, paid → boolean, shipped → date):
order,total,paid,shipped
1001,1500,true,2024-01-15
1002,850.5,false,2024-01-20
6. Prepare Data for Database Import
Before (Excel export):
id,revenue,active,created
1,$5000,TRUE,1/1/2024
2,$6500,FALSE,1/2/2024
After (cleaned for PostgreSQL):
id,revenue,active,created
1,5000,true,2024-01-01
2,6500,false,2024-01-02
Features
- Automatic Type Detection: Intelligently detects numbers, booleans, dates, strings
- Smart Number Cleaning: Removes $, commas, % symbols
- Boolean Standardization: Converts yes/no, 1/0, Y/N to true/false
- Date Formatting: Standardizes dates to ISO format (YYYY-MM-DD)
- Column-by-Column Control: Convert specific columns, leave others unchanged
- Type Suggestions: Shows recommended types based on data
- Real-Time Statistics: Shows conversion count
- CSV Format Support: Handles quoted values and special characters
- One-Click Copy: Copy converted CSV instantly
- Privacy Protected: All conversion happens locally in your browser
Data Type Detection
The tool automatically analyzes your data and suggests types:
Detected as Number:
- $1,200.00 (currency with symbols)
- 15% (percentage)
- 1234 (plain number)
- 99.99 (decimal)
Detected as Boolean:
- true/false
- yes/no
- 1/0
- Y/N
Detected as Date:
- 2024-01-15 (ISO format)
- 01/15/2024 (US format)
- 15-01-2024 (other formats)
- Jan 15, 2024 (text dates)
Detected as String:
- Text that doesn't match other patterns
- Mixed alphanumeric (ABC123)
- Names, descriptions, IDs
Conversion Behavior
Number Conversion:
- Remove currency symbols ($, €, £, ¥)
- Remove thousands separators (commas)
- Remove percentage symbols (%)
- Parse to decimal number
- Keep original if parsing fails
Boolean Conversion:
- Convert to lowercase
- Map common values:
- true: true, yes, y, 1
- false: false, no, n, 0
- Keep original if not recognized
Date Conversion:
- Parse various date formats
- Output ISO format (YYYY-MM-DD)
- Keep original if parsing fails
String (Auto):
- No conversion applied
- Original value preserved
Technical Details
Type Detection Algorithm:
- Check if value matches boolean pattern (yes/no, true/false, 1/0)
- Check if value matches number pattern ($, commas, %, digits)
- Check if value matches date pattern (common date formats)
- Default to string if no pattern matches
Conversion Process:
- Parse CSV and extract headers
- Analyze first data row for type detection
- Suggest data types for each column
- User adjusts types as needed
- Apply conversions to all data rows
- Output cleaned CSV
Performance:
- Processes thousands of rows instantly
- Efficient column-by-column conversion
- O(n*m) where n = rows, m = columns
Best Practices
- Review Suggested Types: Always check auto-detected types before converting
- Test with Sample: Try with a few rows first to verify conversions
- Keep Backups: Save original CSV before converting
- Validate Results: Check output for unexpected conversions
- Use Auto for Text: Leave text columns (names, descriptions) as "Auto"
- Date Consistency: Ensure dates are in recognizable formats
Cleaning Common Data Issues
Currency Formatting:
Problem: $1,200.00 can't be imported as number
Solution: Convert to number → 1200
Inconsistent Booleans:
Problem: Mix of yes/no, true/false, 1/0
Solution: Convert to boolean → standardized true/false
Date Format Variations:
Problem: Mix of 01/15/2024, 2024-01-15, Jan 15 2024
Solution: Convert to date → 2024-01-15 (ISO)
Percentage Values:
Problem: 15% can't be used in calculations
Solution: Convert to number → 15
Database Import Preparation
PostgreSQL:
- Numbers: No symbols, decimal point
- Booleans: true/false (lowercase)
- Dates: YYYY-MM-DD or YYYY-MM-DD HH:MM:SS
- Strings: Any text
MySQL:
- Numbers: No symbols, decimal point
- Booleans: 1/0 or true/false
- Dates: YYYY-MM-DD
- Strings: Any text
Excel:
- Numbers: No $ or commas (Excel adds them)
- Booleans: TRUE/FALSE (uppercase) or 1/0
- Dates: YYYY-MM-DD or M/D/YYYY
- Strings: Any text
Troubleshooting
Problem: Numbers not converting correctly
Solution:
- Check for non-standard currency symbols
- Verify decimal separator is period (.)
- Ensure no extra spaces around numbers
- Remove any alphabetic characters (like "USD")
Problem: Dates not converting
Solution:
- Use recognizable formats (YYYY-MM-DD, MM/DD/YYYY)
- Avoid ambiguous formats (is 01/02/2024 Jan 2 or Feb 1?)
- Check for typos in dates
- Ensure dates are valid (no Feb 30)
Problem: Booleans not standardizing
Solution:
- Check for typos (yse instead of yes)
- Ensure consistent capitalization
- Remove extra spaces
- Use recognized values (yes/no, true/false, 1/0)
Problem: Type detection wrong
Solution:
- Manually select correct type from dropdown
- Check if first row is representative of column
- Some columns may need manual adjustment
Problem: Data lost during conversion
Solution:
- Conversion failures preserve original value
- Check output for unconverted values
- Verify input data format matches expected type
Advanced Tips
Tip 1: Selective Conversion
Only convert columns that need it:
- Keep IDs as strings (even if numeric)
- Convert only amount/price columns to numbers
- Leave text descriptions unchanged
Tip 2: Multiple Conversions
Process data in stages:
- First: Convert all numbers
- Check results
- Then: Convert dates and booleans
Tip 3: Verify Sample Rows
Before converting large files:
- Copy first 10 rows
- Test conversion
- Verify output is correct
- Then convert full file
Tip 4: Handle Mixed Types
Some columns have mixed data:
- Leave as "Auto" if mostly text
- Convert to number if mostly numeric
- Review output for unconverted values
Browser Compatibility
CSV Data Type Converter works in all modern browsers:
- ✅ Google Chrome (recommended)
- ✅ Mozilla Firefox
- ✅ Microsoft Edge
- ✅ Safari
- ✅ Opera
- ✅ Brave
Requirements:
- JavaScript enabled
- Modern browser (2020 or newer)
Privacy & Security
Your Data is Safe:
- All data conversion happens in your browser using JavaScript
- No data is uploaded to any server
- No data is stored or logged
- Works completely offline after page loads
- No cookies or tracking
- 100% client-side processing
Best Practices for Sensitive Data:
- Use the tool in a private/incognito browser window
- Clear browser cache after use if on shared computer
- Don't paste sensitive data in public/shared environments
- Verify HTTPS connection (look for padlock in address bar)
Quick Reference
Data Types:
- Auto: No conversion (keeps original)
- String: Text format (no conversion)
- Number: Removes $, commas, %
- Boolean: Converts to true/false
- Date: Converts to YYYY-MM-DD
Common Conversions:
- $1,200.00 → 1200 (number)
- 15% → 15 (number)
- yes → true (boolean)
- 01/15/2024 → 2024-01-15 (date)
When to Use Each Type:
- Number: Prices, quantities, amounts, percentages
- Boolean: Yes/no flags, true/false states
- Date: Dates, timestamps
- String: Names, IDs, descriptions, text
Integration with Other Tools
After Converting:
- For Excel: Paste into spreadsheet
- For Database: Use SQL import tools
- For Analysis: Load into Python/R
- For APIs: Convert to JSON
Workflow Example:
- Export data from system (messy format)
- Convert types with this tool
- Rename columns with CSV Column Renamer
- Import to database or analysis tool
Frequently Asked Questions
Related Development Tools
JSON Formatter & Validator
FeaturedFormat, validate, and pretty-print JSON with our developer-friendly editor.
Use Tool →QR Code Generator
FeaturedCreate custom QR codes for URLs, text, and contact info
Use Tool →CSS Beautifier
Format messy CSS into clean, readable styles with consistent indentation and spacing. Perfect for cleaning up minified or poorly formatted stylesheets.
Use Tool →CSV Sorter
Sort CSV by columns - Order CSV rows by one or more columns in ascending or descending order with multi-level sorting support
Use Tool →TSV to CSV Converter
Convert TSV to CSV - Transform tab-separated values to comma-separated values with automatic quoting
Use Tool →CSV to TSV Converter
Convert CSV to TSV - Transform comma-separated values to tab-separated values with automatic quote removal
Use Tool →CSV Column Renamer
Rename CSV columns - Change CSV column headers and standardize naming conventions with camelCase, snake_case, or Title Case
Use Tool →HTTP Status Code Checker
Look up HTTP status codes and their meanings instantly. Understand error codes and how to fix them.
Use Tool →Share Your Feedback
Help us improve this tool by sharing your experience